Giải bài tập 7 trang 97 SGK Toán 9 tập 1 – Chân trời sáng tạo

Cho đường tròn (O) có hai đường kính AB, CD vuông góc với nhau. Lấy một điểm M trên cung nhỏ AC rồi vẽ tiếp tuyến với đường tròn (O) tại M. Tiếp tuyến này cắt đường thẳng CD tại S. Chứng minh rằng \(\widehat {MSD} = 2\widehat {MBA}\).

Đề bài

Cho đường tròn (O) có hai đường kính AB, CD vuông góc với nhau. Lấy một điểm M trên cung nhỏ AC rồi vẽ tiếp tuyến với đường tròn (O) tại M. Tiếp tuyến này cắt đường thẳng CD tại S. Chứng minh rằng \(\widehat {MSD} = 2\widehat {MBA}\).

Phương pháp giải – Xem chi tiết

Đọc kĩ dữ liệu đề bài để vẽ hình.

Chứng minh \(\widehat {MSD} = \widehat {MOA}\) và \(\widehat {MOA} = 2\widehat {MBA}\) suy ra \(\widehat {MSD} = 2\widehat {MBA}\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Ta có SM \( \bot \) OM (Tính chất tiếp tuyến)

Suy ra tam giác OSM vuông tại M

Ta có \(\widehat {MSO} + \widehat {MOS} = {90^o}\)

Và  AB\( \bot \)CD (gt)

Suy ra \(\widehat {MOS} + \widehat {MOA} = {90^o}\)

Nên \(\widehat {MSO} = \widehat {MOA}\) hay \(\widehat {MSD} = \widehat {MOA}\) (1)

Ta có \(\widehat {MOA} = 2\widehat {MBA}\) (góc ở tâm cùng chắn cung AM) (2)

Từ (1) và (2) suy ra \(\widehat {MSD} = 2\widehat {MBA}\).

TẢI APP ĐỂ XEM OFFLINE