Giải bài tập 5 trang 124 SGK Toán 9 tập 1 – Cánh diều

Cho hai đường tròn \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tiếp xúc ngoài với nhau tại \(P\) với \(R \ne r\), đường thẳng \(a\) lần lượt tiếp xúc với \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tại \(A\) và \(B,a\) cắt \(KI\) tại \(O\). Đường thẳng qua \(P\) vuông góc với \(IK\) cắt đường thẳng \(a\) tại \(M\). Chứng minh: a) \(\frac{{OI}}{{OK}} = \frac{r}{R}\); b) \(AB = 2MP\); c) \(\widehat {IMK} = 90^\circ \).

Đề bài

Cho hai đường tròn \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tiếp xúc ngoài với nhau tại \(P\) với \(R \ne r\), đường thẳng \(a\) lần lượt tiếp xúc với \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tại \(A\) và \(B,a\) cắt \(KI\) tại \(O\). Đường thẳng qua \(P\) vuông góc với \(IK\) cắt đường thẳng \(a\) tại \(M\). Chứng minh:

a) \(\frac{{OI}}{{OK}} = \frac{r}{R}\);

b) \(AB = 2MP\);

c) \(\widehat {IMK} = 90^\circ \).

Phương pháp giải – Xem chi tiết

Dựa vào kiến thức đã học để chứng minh.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) Do \(AI\) là tiếp tuyến của \(\left( I \right)\) nên \(AI \bot AB\)

Do \(BK\) là tiếp tuyến của \(\left( K \right)\) nên \(KB \bot AB\)

Từ đó suy ra \(AI//BK\)

Xét tam giác \(OBK\) có: \(AI//BK \Rightarrow \frac{{OI}}{{OK}} = \frac{{AI}}{{BK}} = \frac{r}{R}\) (định lí Thalet).

b) Xét \(\left( I \right)\) có \(MP,MA\) là hai tiếp tuyến cắt nhau

\( \Rightarrow MP = MA\)(1).

Xét \(\left( K \right)\) có \(MP,MB\) là hai tiếp tuyến cắt nhau

\( \Rightarrow MP = MB\)(2).

Từ (1) và (2) suy ra \(MP + MP = MA + MB \Rightarrow 2MP = AB\)

c) Do \(AI//BK \Rightarrow \widehat {OIA} = \widehat {IKB}\) (2 góc đồng vị).

Mà \(\widehat {AIK} + \widehat {OAI} = 180^\circ \) (2 góc kề bù) nên \(\widehat {AIK} + \widehat {IKB} = 180^\circ \) (3).

Do \(MP,MA\) là hai tiếp tuyến cắt nhau

\( \Rightarrow IM\) là phân giác \(\widehat {AIP} \Rightarrow \widehat {MIP} = \frac{1}{2}\widehat {AIP}\) (4).

Do \(MP,MB\) là hai tiếp tuyến cắt nhau

\( \Rightarrow KM\) là phân giác \(\widehat {IKP} \Rightarrow \widehat {MKP} = \frac{1}{2}\widehat {IKP}\) (5).

Từ (3), (4) và (5) suy ra \(\frac{1}{2}\widehat {AIP} + \frac{1}{2}\widehat {IKP} = \frac{1}{2}.180^\circ  \Rightarrow \widehat {MIP} + \widehat {MKP} = 90^\circ \)

Xét tam giác \(IMK\) có: \(\widehat {MIP} + \widehat {MKP} = 90^\circ  \Rightarrow \widehat {IMK} = 90^\circ \)

TẢI APP ĐỂ XEM OFFLINE

Toán 9 tập 1 – Cánh diều