Bài 37 trang 11 SBT toán 9 tập 1

Giải bài 37 trang 11 sách bài tập toán 9. Áp dụng quy tắc chia hai căn bậc hai, hãy tính…

Lựa chọn câu để xem lời giải nhanh hơn

Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

LG câu a

\( \displaystyle{{\sqrt {2300} } \over {\sqrt {23} }}\) 

Phương pháp giải:

Liên hệ giữa phép chia và phép khai phương:

Với \(A \ge 0\) và \(B > 0\) ta có: \(\dfrac{{\sqrt A }}{{\sqrt B }} = \sqrt {\dfrac{A}{B}}\)

Lời giải chi tiết:

\( \displaystyle{{\sqrt {2300} } \over {\sqrt {23} }} = \sqrt {{{2300} \over {23}}}  = \sqrt {100}  = 10\)

Vui lòng nhập mật khẩu để tiếp tục

test123

LG câu b

\( \displaystyle{{\sqrt {12,5} } \over {\sqrt {0,5} }}\)

Phương pháp giải:

Liên hệ giữa phép chia và phép khai phương:

Với \(A \ge 0\) và \(B > 0\) ta có: \(\dfrac{{\sqrt A }}{{\sqrt B }} = \sqrt {\dfrac{A}{B}}\)

Lời giải chi tiết:

\( \displaystyle{{\sqrt {12,5} } \over {\sqrt {0,5} }} = \sqrt {{{12,5} \over {0,5}}}  = \sqrt {25}  = 5\)

LG câu c

\( \displaystyle{{\sqrt {192} } \over {\sqrt {12} }}\)

Phương pháp giải:

Liên hệ giữa phép chia và phép khai phương:

Với \(A \ge 0\) và \(B > 0\) ta có: \(\dfrac{{\sqrt A }}{{\sqrt B }} = \sqrt {\dfrac{A}{B}}\)

Lời giải chi tiết:

\( \displaystyle{{\sqrt {192} } \over {\sqrt {12} }} = \sqrt {{{192} \over {12}}}  = \sqrt {16}  = 4\)

LG câu d

\( \displaystyle{{\sqrt 6 } \over {\sqrt {150} }}\)

Phương pháp giải:

Liên hệ giữa phép chia và phép khai phương: 

Với \(A \ge 0\) và \(B > 0\) ta có: \(\dfrac{{\sqrt A }}{{\sqrt B }} = \sqrt {\dfrac{A}{B}}\)

Lời giải chi tiết:

\( \displaystyle{{\sqrt 6 } \over {\sqrt {150} }} = \sqrt {{6 \over {150}}}  = \sqrt {{1 \over {25}}}  = {1 \over 5}\) 

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE