Bài 2.73 trang 134 SBT giải tích 12

Giải bài 2.73 trang 134 sách bài tập giải tích 12. Tìm số tự nhiên n bé nhất sao cho:…

Đề bài

Tìm số tự nhiên \(\displaystyle n\) bé nhất sao cho:

a) \(\displaystyle {\left( {\frac{1}{2}} \right)^n} \le {10^{ – 9}}\)

b) \(\displaystyle 3 – {\left( {\frac{7}{5}} \right)^n} \le 0\)

c) \(\displaystyle 1 – {\left( {\frac{4}{5}} \right)^n} \ge 0,97\)

d) \(\displaystyle {\left( {1 + \frac{5}{{100}}} \right)^n} \ge 2\)

Phương pháp giải – Xem chi tiết

Giải từng bất phương trình, sử dụng MTBT để tìm số tự nhiên \(\displaystyle m\) thỏa mãn yêu cầu.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) Ta có: \(\displaystyle {\left( {\frac{1}{2}} \right)^n} \le {10^{ – 9}}\) \(\displaystyle  \Leftrightarrow n \ge {\log _{\frac{1}{2}}}{10^{ – 9}}\) \(\displaystyle  \Leftrightarrow n \ge 9{\log _2}10 \approx 29,897\)

Vì \(\displaystyle n\) là số tự nhiên bé nhất nên \(\displaystyle n = 30\).

b) Ta có: \(\displaystyle 3 – {\left( {\frac{7}{5}} \right)^n} \le 0\)\(\displaystyle  \Leftrightarrow {\left( {\frac{7}{5}} \right)^n} \ge 3\) \(\displaystyle  \Leftrightarrow n \ge {\log _{\frac{7}{5}}}3 \approx 3,265\)

Mà \(\displaystyle n\) là số tự nhiên bé nhất nên \(\displaystyle n = 4\).

c) Ta có: \(\displaystyle 1 – {\left( {\frac{4}{5}} \right)^n} \ge 0,97\)\(\displaystyle  \Leftrightarrow {\left( {\frac{4}{5}} \right)^n} \le 0,03\) \(\displaystyle  \Leftrightarrow n \le {\log _{\frac{4}{5}}}0,03 \approx 15,71\)

Mà \(\displaystyle n\) là số tự nhiên bé nhất nên \(\displaystyle n = 16\).

d) Ta có: \(\displaystyle {\left( {1 + \frac{5}{{100}}} \right)^n} \ge 2\)\(\displaystyle  \Leftrightarrow {\left( {\frac{{21}}{{20}}} \right)^n} \ge 2\) \(\displaystyle  \Leftrightarrow n \ge {\log _{\frac{{21}}{{20}}}}2 \approx 14,21\)

Mà \(\displaystyle n\) là số tự nhiên bé nhất nên \(\displaystyle n = 15\).

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE