Giải bài 1.30 trang 25 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng)

Đề bài

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng) của một năm không nhuận được mô hình hóa bởi hàm số:

\(L\left( t \right) = 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t – 80} \right)} \right)\) với \(t \in \mathbb{Z}\) và \(0 < t \le 365\)

a) Vào ngày nào trong năm thì thành phố A có ít giờ ánh sáng mặt trời nhất?

b) Vào ngày nào trong năm thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?

c) Vào ngày nào trong năm thì thành phố A có khoảng 10 giờ ánh sáng mặt trời?

Phương pháp giải – Xem chi tiết

* Sử dụng kiến thức \( – 1 \le \sin x \le 1\) với mọi x

* Sử dụng cách giải phương trình \(\sin x = m\) (1)

+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.

+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha  \in \left[ { – \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha  = m\).

Khi đó, phương trình (1) tương đương với:

\(\sin x = m \Leftrightarrow \sin x = \sin \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x = \pi  – \alpha  + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Vì \( – 1 \le \sin \left( {\frac{{2\pi }}{{365}}\left( {t – 80} \right)} \right) \le 1\) nên \( – 2,83 \le 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t – 80} \right)} \right) \le 2,83\)

Do đó, \(9,17 = 12 – 2,83 \le 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t – 80} \right)} \right) \le 12 + 2,83 = 12,83\;\forall t \in \mathbb{R}\)

a) Ngày thành phố A có ít giờ ánh sáng nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t – 80} \right)} \right) =  – 1 \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t – 80} \right) = \frac{{ – \pi }}{2} + k2\pi  \Leftrightarrow t = \frac{{ – 45}}{4} + 365k\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 1,\) suy ra \(t = \frac{{ – 45}}{4} + 365 = 353,75.\) Như vậy, vào ngày thứ 353 của năm, tức là khoảng ngày 20 tháng 12 thì thành phố A sẽ có ít giờ ánh sáng mặt trời nhất.

b) Ngày thành phố A có nhiều giờ ánh sáng nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t – 80} \right)} \right) = 1 \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t – 80} \right) = \frac{\pi }{2} + k2\pi  \Leftrightarrow t = \frac{{45}}{4} + 365k\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 0,\) suy ra \(t = 171,25.\) Như vậy, vào ngày thứ 171 của năm, tức là khoảng ngày 20 tháng 6 thì thành phố A sẽ có nhiều giờ ánh sáng mặt trời nhất.

c) Thành phố A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu

\(12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t – 80} \right)} \right) = 10 \Leftrightarrow 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t – 80} \right)} \right) = \frac{{ – 200}}{{283}}\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{365}}\left( {t – 80} \right) \approx  – 0,78 + k2\pi \\\frac{{2\pi }}{{365}}\left( {t – 80} \right) \approx 3,938 + k2\pi \end{array} \right.\)

Từ đó ta được \(\left[ \begin{array}{l}t \approx 34,69 + 365k\\t \approx 308,3 + 365k\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 0,\) suy ra \(t \approx 34,69\) hoặc \(t \approx 308,30.\) Như vậy, vào ngày thứ 34 của năm, tức là khoảng ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thì thành phố A có khoảng 10 giờ ánh sáng mặt trời.

TẢI APP ĐỂ XEM OFFLINE