Giải bài tập 4.1 trang 73 SGK Toán 9 tập 1 – Kết nối tri thức

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, cosin, tang, cotang của các góc nhọn B và C khi biết: a) AB = 8 cm, BC = 17 cm; b) AC = 0,9 cm, AB = 1,2 cm.

Đề bài

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, cosin, tang, cotang của các góc nhọn B và C khi biết:

a) AB = 8 cm, BC = 17 cm;

b) AC = 0,9 cm, AB = 1,2 cm.

Phương pháp giải – Xem chi tiết

Sử dụng các tỉ số lượng giác để giải.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a)

Tam giác ABC vuông tại A nên ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)

Thay số ta có \({17^2} = {8^2} + A{C^2}\) hay \(A{C^2} = {17^2} – {8^2} = 225\) suy ra \(AC = 15\) cm (vì \(AC > 0\))

Ta có: \(\sin \widehat B = \cos \widehat C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}}\)

\(\cos \widehat B = \sin \widehat C = \frac{{AB}}{{BC}} = \frac{8}{{17}}\)

\(\tan \widehat B = \cot \widehat C = \frac{{AC}}{{AB}} = \frac{{15}}{8}\)

\(\cot \widehat B = \tan \widehat C = \frac{{AB}}{{AC}} = \frac{8}{{15}}\)

b)

Tam giác ABC vuông tại A nên ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)

Thay số ta có \(B{C^2} = 1,{2^2} + 0,{9^2} = 2,25\) hay \(CB = \sqrt {2,25}  = 1,5\) cm (vì \(BC > 0\))

Ta có: \(\sin \widehat B = \cos \widehat C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = \frac{3}{5}\)

\(\cos \widehat B = \sin \widehat C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = \frac{4}{5}\)

\(\tan \widehat B = \cot \widehat C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = \frac{3}{4}\)

\(\cot \widehat B = \tan \widehat C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}\)

TẢI APP ĐỂ XEM OFFLINE

Toán 9 tập 1 – Kết nối tri thức