Câu 28 trang 76 SGK Đại số và Giải tích 11 Nâng cao

Gieo hai con súc sắc cân đối.

Lựa chọn câu để xem lời giải nhanh hơn

Gieo hai con súc sắc cân đối.

LG a

Mô tả không gian mẫu.

Phương pháp giải:

– Liệt kê các phần tử của không gian mẫu.

– Liệt kê các khả năng thuận lời cho từng biến cố A, B, C.

– Tính xác suất theo công thức \(P\left( A \right) = \dfrac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega  \right|}}\)

Lời giải chi tiết:

 

Không gian mẫu có 36 phần tử.

Vui lòng nhập mật khẩu để tiếp tục

test321

LG b

Gọi A là biến cố “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hoặc bằng 7”. Liệt kê các kết quả thuận lợi cho A. Tính P(A).

Phương pháp giải:

– Liệt kê các phần tử của không gian mẫu.

– Liệt kê các khả năng thuận lời cho từng biến cố A, B, C.

– Tính xác suất theo công thức \(P\left( A \right) = \dfrac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega  \right|}}\)

Lời giải chi tiết:

Ta có:

\({\Omega _A} = \left\{ \begin{array}{l}
\left( {1;1} \right),\left( {1;2} \right),\left( {1;3} \right),\left( {1;4} \right),\left( {1;5} \right),\left( {1;6} \right)\\
\left( {2;1} \right),\left( {2;2} \right),\left( {2;3} \right),\left( {2;4} \right),\left( {2;5} \right),\\
\left( {3;1} \right),\left( {3;2} \right),\left( {3;3} \right),\left( {3;4} \right),\left( {4;1} \right),\\
\left( {4;2} \right),\left( {4;3} \right),\left( {5;1} \right),\left( {5;2} \right),\left( {6;1} \right)
\end{array} \right\}\)

Tập \({\Omega _A}\) có \(21\) phần tử.

Vậy \(\displaystyle P\left( A\right) = {{21} \over {36}}= {{7} \over {12}}\).

LG c

Cũng hỏi như trên cho các biến cố B : “Có ít nhất một con súc sắc xuất hiện mặt 6 chấm” và C “Có đúng một con súc sắc xuất hiện mặt 6 chấm”.

Phương pháp giải:

– Liệt kê các phần tử của không gian mẫu.

– Liệt kê các khả năng thuận lời cho từng biến cố A, B, C.

– Tính xác suất theo công thức \(P\left( A \right) = \dfrac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega  \right|}}\)

Lời giải chi tiết:

\({\Omega _B} = \left\{ \begin{array}{l}\left( {6;1} \right),\left( {6;2} \right),\left( {6;3} \right),\left( {6;4} \right),\\\left( {6;5} \right),\left( {6;6} \right),\left( {1;6} \right),\left( {2;6} \right),\\\left( {3;6} \right),\left( {4;6} \right),\left( {5;6} \right)\end{array} \right\}\)

Tập \({\Omega _B}\) có \(11\) phần tử.

Vậy \(\displaystyle P\left( B\right) = {{11} \over {36}}\).

\({\Omega _C} = \left\{ \begin{array}{l}\left( {6;1} \right),\left( {6;2} \right),\left( {6;3} \right),\left( {6;4} \right),\left( {6;5} \right),\\\left( {1;6} \right),\left( {2;6} \right),\left( {3;6} \right),\left( {4;6} \right),\left( {5;6} \right)\end{array} \right\}\)

Vậy \({\Omega _C}\) có \(10\) phần tử.

Do đó \(\displaystyle P\left( C \right) = {{10} \over {36}} = {5 \over {18}}.\)

 Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO