Bài 22 trang 95 Vở bài tập toán 9 tập 1

Giải bài 22 trang 95 VBT toán 9 tập 1. Tam giác ABC vuông tại A, có AC = 1/2 BC. Tính sinB, cosB, tanB, cotB.

Đề bài

Tam giác ABC vuông tại A, có \(AC = \dfrac{1}{2}BC\) . Tính sinB, cosB, tanB, cotB.

Phương pháp giải – Xem chi tiết

– Quy ước các đơn vị và dựa vào định nghĩa các tỉ số lượng giác trong tam giác vuông, tìm độ lớn của \(\widehat B.\)

– Từ đó tính tiếp các giá trị lượng giác khác của \(\widehat B.\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Trong tam giác vuông \(ABC,\) nếu coi \(AC = 1\) thì \(BC = 2\) và ta có \(\sin B = \dfrac{{AC}}{{BC}} = \dfrac{1}{2}\)

Suy ra \(\widehat B = {30^o}\)

Từ bảng lượng giác của các góc đặc biệt, ta có :

\(\cos B = \cos {30^o} = \dfrac{{\sqrt 3 }}{2}\)

\(\tan B = \tan {30^o} = \dfrac{{\sqrt 3 }}{3}\) 

\(\cot B = \cot {30^o} = \sqrt 3 \)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE